Soft Flexible Haptic Displays for AR/VR and Wearable Computing

(EPFL-LMTS) Prof. Herbert Shea Dr. Ronan Hinchet Dr. Juan Zarate

(**ETHZ**-AIT) Prof. Otmar Hilliges Mr. Velko Vechev Dr. Fabizio Pece

EPFL

ETH zürich

Our Team

Dr. Juan Zarate

Dr. Ronan Hinchet

Prof. Herbert

Prof. Otmar Hilliges

Mr. Velko

Dr. Fabizio Pece

EPFL Soft Transducers Lab

- Prof. Herbert Shea
- · Dr. Ronan Hinchet
- Dr. Juan Zarate

ETHZ Advanced Interactive Technologies Lab

- Prof. Otmar Hilliges
- Mr. Velko Vechev
- Dr. Fabizio Pece

EPFL ETH zürich

There is a need for a glove for VR/AR that allows truly feeling and manipulating virtual objects.

Dexterous Manipulation of Virtual Objects

Virtual Robotic Operation

Realistic Experiences

The primitive or bulky state of Wearable haptic feedback today...

[Teslasuit.com]

https://haptx.com/

[DextaRobotics - Dexmo

[Gloveone]

EPFL

For an effective haptic glove, we need to solve **two levels of actuation challenge**

ETH zürich

EPFL

Our key accomplishments to date in this project

- 1. DextrES kinesthetic glove
- 2. Tactiles cutaneous glove
- 3. Pose sensing glove

1. DextrES: a low-power Wearable Electrostatic Clutch

dynamically blocks finger motion to give the impression of solidity to virtual objects

EPFL

very slim form-factor does not hinder finger motion when off

ETH zürich

https://haptx.com/

ETH zürich

Now a new Textile version of the clutch: 10x higher force, 5x lower voltage, fully compliant

can block small joints and high force joints power: less than 2 mW / cm²

3

ETH zürich

EPFL

Our gen. 2 textile ESclutch can block 2 kg/cm² at 300V

this unrivalled performance enables a broad range of haptics applications in exoskeletons and full-body haptics

2. <u>Tactiles</u>: arrays of fast small pins to provide detailed and realistic sense of touch on fingers and hand

Designed for Notifications Designed for VR Touch [Pece et al. MagTics] [TacTiles]

Render **realistic tactile** feedback for **extended periods** of time in a **light and conformal** interface

EPFL ETH zürich

Per second Sustained 200Hz

Per second Burst

EPFL

Modes and Applications

Linear →

Radial ↓

Radial ←

ETH zürich

Pulse Mode

Contact Mode

EPFL ETH zürich

3. Pose Sensing glove

fully stretchable distributed strain sensor to provide continuous information on hand pose

Publications / Conferences

We publish in Conferences with acceptance rate of order only 20%

- UIST 2017
- UIST 2018
- IEEVR 2019
- Preparing submission to SIGGRAPH 2020
- ACM Transaction on Graphics
- Patent filing on the flexible clutch

EPFL

ETH zürich

Outlook

Our main challenges for next year:

- 1. Softer, higher density, more integrated cutaneous actuators
- 2. Efficient sizing of clutch for different body parts and for different people
- Integration of both clutch and cutaneous actuators into one glove / sleeve /suit

EPFL

New cutaneous actuators: Soft hydraulically amplified dielectric actuators

- · Actuator diameter of 3 mm
- Force of 400 mN
- Large displacement: 500 μm
- Fast and compatible with vibrations up to hundreds of
- scalable to array
- can be extended to generate shear forces

EPFL

ETH zürich

towards a haptic sleeve

ES clutch: adapting it to block any joint on any body

Starting with a **specific movement** of the human body, we calculate the **primary strain** components and produce and **optimal** clutch design with a particular **area budget**.

Fabrication of complex ESclutch shape with large surfaces integrated onto skin

EPFL

Our sincere thanks to the Hasler Foundation for funding this research

Thank you for your attention!

ETH zürich

Contact Info:

Prof. Herbert Shea (herbert.shea@epfl.ch)
EPFL-LMTS

Prof. Otmar Hilliges (otmar.hilliges@inf.ethz.ch) ETHZ-AIT